skip to main content


Search for: All records

Creators/Authors contains: "Dutta, Raj Gautam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The increasing complexity of System-on-Chip (SoC) designs and the rise of third-party vendors in the semiconductor industry have led to unprecedented security concerns. Traditional formal methods struggle to address software-exploited hardware bugs, and existing solutions for hardware-software co-verification often fall short. This paper presents Microscope, a novel framework for inferring software instruction patterns that can trigger hardware vulnerabilities in SoC designs. Microscope enhances the Structural Causal Model (SCM) with hardware features, creating a scalable Hardware Structural Causal Model (HW-SCM). A domain-specific language (DSL) in SMT-LIB represents the HW-SCM and predefined security properties, with incremental SMT solving deducing possible instructions. Microscope identifies causality to determine whether a hardware threat could result from any software events, providing a valuable resource for patching hardware bugs and generating test input. Extensive experimentation demonstrates Microscope's capability to infer the causality of a wide range of vulnerabilities and bugs located in SoC-level benchmarks. 
    more » « less
    Free, publicly-accessible full text available April 1, 2025
  2. This paper presents LLM4SecHW, a novel framework for hardware debugging that leverages domain-specific Large Language Model (LLM). Despite the success of LLMs in automating various software development tasks, their application in the hardware security domain has been limited due to the constraints of commercial LLMs and the scarcity of domain-specific data. To address these challenges, we propose a unique approach to compile a dataset of open-source hardware design defects and their remediation steps, utilizing version control data. This dataset provides a substantial foundation for training machine learning models for hardware. LLM4SecHW employs fine-tuning of medium-sized LLMs based on this dataset, enabling the identification and rectification of bugs in hardware designs. This pioneering approach offers a reference workflow for the application of fine-tuning domain-specific LLMs in other research areas. We evaluate the performance of our proposed system on various open-source hardware designs, demonstrating its efficacy in accurately identifying and correcting defects. Our work brings a new perspective on automating the quality control process in hardware design. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. Hardware IP verification requires collaboration from several parties, including the 3PIP vendor, IP user, and EDA tool vendor, all of whom could threaten the design's integrity and confidentiality. Various frameworks and tools, including the IEEE 1735 standard, have been developed to address these concerns. However, these solutions fall short of the zero trust model's requirements. To overcome this, we propose a novel zero trust formal verification framework that incorporates secure multiparty computation to ensure the privacy of all the parties involved in the verification process. The efficiency of the framework is demonstrated by checking various open-source IP-level benchmarks. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
  7. Proliferation of distributed Cyber-Physical Systems has raised the need for developing computationally efficient security solutions. Toward this objective, distributed state estimators that can withstand attacks on agents (or nodes) of the system have been developed, but many of these works consider the estimation error to asymptotically converge to zero by restricting the number of agents that can be compromised. We propose Resilient Distributed Kalman Filter (RDKF), a novel distributed algorithm that estimates states within an error bound and does not depend on the number of agents that can be compromised by an attack. Our method is based on convex optimization and performs well in practice, which we demonstrate with the help of a simulation example. We theoretically show that, in a connected network, the estimation error generated by the Distributed Kalman Filter and our RDKF at each agent converges to zero in an attack free and noise free scenario. Furthermore, our resiliency analysis result shows that the RDKF algorithm bounds the disturbance on the state estimate caused by an attack. 
    more » « less
  8. Automotive systems have always been designed with safety in mind. In this regard, the functional safety standard, ISO 26262, was drafted with the intention of minimizing risk due to random hardware faults or systematic failure in design of electrical and electronic components of an automobile. However, growing complexity of a modern car has added another potential point of failure in the form of cyber or sensor attacks. Recently, researchers have demonstrated that vulnerability in vehicle's software or sensing units could enable them to remotely alter the intended operation of the vehicle. As such, in addition to safety, security should be considered as an important design goal. However, designing security solutions without the consideration of safety objectives could result in potential hazards. Consequently, in this paper we propose the notion of security for safety and show that by integrating safety conditions with our system-level security solution, which comprises of a modified Kalman filter and a Chi-squared detector, we can prevent potential hazards that could occur due to violation of safety objectives during an attack. Furthermore, with the help of a car-following case study, where the follower car is equipped with an adaptive-cruise control unit, we show that our proposed system-level security solution preserves the safety constraints and prevent collision between vehicle while under sensor attack. 
    more » « less